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Abstract. In multi-group epidemiological models with nonrandom mixing between peo-
ple in the different groups, often artificial constraints have to be imposed in order to
satisfy the balance conditions. Based on the model in [9], we construct a simple biased
mixing model where the balance conditions are automatically satisfied as a natural conse-
quence of the equations. The model can be applied to situations where biased partnership
formation is central and mixing can be between people in different risk, social, economic,
ethnic, or geographic groups. After describing the formulation of the model, we discuss
the features of the model and preliminarily study sensitivity of some parameters. We
describe the discrete model based on ordinary differential equations and generalize to a
continuum described by partial differential equations.

AMS Subject Classfication: 34A34, 34D20, 92B05, 92-06, 92D30

1. Introduction

The spread of sexually transmitted diseases (STD’s) is complex. It depends on
not only the transmission mechanism but also behaviors of individuals involved in
the transmission process. One of the determinants of the spread is the way that
individuals select their sexual partners. In a mathematical model for the spread
of ATD’s, it is important to understand and correctly account for the formulation
of their partnerships. In modeling partnerships, the partnership formation must
satisfy the balance constraints (see, e.g., [1], [2], [3], [4], [7], [8], [10], and [11]). That
is, the number of partnerships formed by people in group A with people in group B
in a given period of time must equal the number of partnerships formed by people
in group B with people in group A. Because of this balance requirement, if the
number of sexual partners for each subpopulation is assumed to be given, often
artificial constraints are imposed ([5), [6]), or complicated mathematical derivations
are needed ([1}, (2], [3])-

There are mixing multigroup models where the balance constraints are auto-
matically satisfied. In the models of [12], [14], [15], and [16], the mixing between
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groups is determined by a stochastic migration matrix, where the entries are based
on the fraction of individuals from one group that interact with people in another
group. The model in [9] is based on assuming that the number of social contacts
and the fraction of individuals in one group that are acceptable to someone in
another group is known. The rate of making social contacts between two different
groups which result in partnerships is symmetric and the balance constraints are
automatically satisfied. They further assume that encounters which form partner-
ships depend on an individual’s sexual drive, on the constraints which morals or
fear of sexually transmitted diseases place on behavior, and on current partnership
status. These complicated assumptions are epidemiologically reasonable, but they
make mathematical analysis extremely difficult.

To simplify the mathematical analysis, we modify the model in [9] and reformu-
late the partnership formulation in a natural way so that the balance constraints

~are automatically satisfied. We refer to this simplified version as the Biased Pref-

erence Model (BPM). We first consider the discrete case where the population is
divided into subgroups. The classification of these subgroups can be based on risk
levels, age, social behaviors, economic status, ethnic, or geographic positions. We
then discuss the basic features of the model in Section 3. A preliminary mathemat-
ical analysis is outlined in Section 4. A generalization of the model to a continuum
and a brief discussion are given in Section 5. Some final discussion remarks are
made in Section 6.

2. The biased preference model formulation

Divide the susceptible and infected populations into K groups, S; and I;, i =

1,.--, K, and consider the simple transmission model system:
dsS;
d—’ =p(SY — Si) — MiSi, |
df._ i=1,--- K (2.1)
d—; =—vl; + \;S;,

where p is the natural death rate, 1/v is the mean duration of the incubation
period, and J; is the rate of infection.

The rate of infection ); is a functional of the model variables among which
the formation of partnership plays an essential role. Here a partnership is an ac-
tivity between two people where the infection can be transmitted (e.g. sexual
intercourse). We assume people in each group behave the same when selecting a
partner, but have biases between groups. In other words, mixing within each group

~ is assumed to be random but there is nonrandom mixing among these groups.

The formation of partnerships is one of the most important factors in modeling
sexually transmitted diseases. It depends on the desirability of an active individual,
the acceptability of the potential partners, and the availability of these potential
partners. '
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Let a;; be the preference of people in group i to have a partner from 7, that
is, the fraction of people in group j with whom each individual in group i desires
to form a partnership. This describes the desirability of group j to group 4. It is
also the acceptability of people in group i to have a partner from group j. If an
individual from group i encounters an individual from group j, then the conditional
probability that a partnership will form is

p(ili) = oija: = gij- (2.2)

The availability of partners from group j is the probability p,(j) = 3, where
N;=S5+I,and N = ZN Hence, after an encounter of someone from group

i with another 1nd1v1dua.1 the probability of a partnership forming between indi-
viduals from group i and group j is

N;

p(z .7) = QO N =qij 5 N

(2.3)
We assume that the probability of transmission from an infected partner to a

susceptible individual is group independent and we denote it by 3. The infection
rate of people in group i is

K I K 1. .
=B plid) =B 4y (24)
.3=1 J=1
where ¢ is the number of encounters per person per unit time, and N; is the

probability that a person encountered from group j is infected. Here we have

assumed that the encounter rate is group independent. The preferences need not be

symmetric (i.e. a;; is not necessarily equal to a;;, when i # j), but the probability
of a partnership forming is symmetric since g;; = a;joy; implies g;; = gj;. Also,

we note that there is no constraint on Ea,-j, which may be less than or greater -

than one.

The model (2.1) with infection rate (2.4) is in a very general setting. Two
extreme cases can be easily obtained as follows. oz,J = 0 and hence ¢;; =0, i # j,
gives the restricted mixing. a;; = a;, for J =1,.--, K, leads to the proportional
mixing ([7)).

To simplify the mathematical analysis, we assume that each 11r1d1v1dual in the
population encounter other people at the same rate. If we assume that people in
different groups have different rates of encounters, c;, then the rate of mfectlon
can be expressed as

Ai=p Z qij Z cka » . (2.5)

J=1
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3. Features of the model

Balance constraints. We denote the number of partners of people in group i
from group j by T;;. Note that T;; = T};. In many biased mixing models where
an attempt is made to directly control the number of partneced by constructing
preferred, selective, or structured mixing functions (see [5], [6], [7], [8], and [13]).
However, in the BPM, the balance constraint

N; N;
T,-,- = ogij 3y Ni = cgji gy Ny = T (3.1)

is automatically satisfied. Thus, by using the acceptability «;; or desirability a;;
of an individual from group ¢ to an individual from group j as the primary control
variable in the biased preference mixing model (instead of the number of partners
an individual from group 7 desires from group j), the balance constraints become
a natural consequence of the model, rather than an artificially imposed constraint.

When the rates of encounters in different groups are different, the balance
constraint is still satisfied smce the total number of partners of people in group i
from group ] is T,J = c,q,,ZI—J-—N which is equal to the number of partners of

people in group J from group i, Tji.

‘The number of partners. The number of sexual partners per individual in
many multi-group models is assumed to be constant. When all o;;’s are equal
(proportional mixing), this is also true from (2.1) for BPM. However, if the mixing
is biased, the number of partners will vary in time depending on the combination
of desirability, acceptability, and availability.

From Section 2, the number of partners per person in group ¢ is

K N
rs==¢C Z q,;j—]\% y (3.2)
=

which reaches its maximum for the proportional mixing, where g;; = 1 (i.e. every-
one is equally acceptable as a partner) and r; = c.

If the mixing is biased, people have preferences when choosing their partners.
Because the acceptability and the availability must be taken into a consideration
and a limitation may occur, ¢;; < 1, and hence r; <c.

Example 3.1. Consider a two group model governed by

ds;

dt

dr;
—d_‘E._—VI +AS1,

=u(S? — S;) — \iSi,
i=1,2, (3.3)
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with
¢
Ai = ﬁB (gin]1 + ginl2).
Then r; = -]% (gin Ny + giaN2) and

c
n-m=g ((q11 — @M1 + (¢ — g22) V),

where ¢ = q12 = q21- If 11 < ¢ < ¢22 or q11 > ¢ > ga2, then r; is always less than
or greater than ry respectively. Otherwise, they may alternate at different times.
We use the following model parameters:

S? = 350, S;(0) =350, I;(0) =10, Sg = 100, 52(0) =100, I,(0) = 250,
c=2>5, p=0.015, an= 0.(3, app=1 agy = 0.5, ‘aigg = 0.2.

Depending on the probability of transmission, the disease may spread in the
population or die out eventually. For example, when 3 = 0.05, the disease dies out
(see Fig. 1), but when 8 = 0.1, the disease persists (see Fig. 2).
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Fig. 2a
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4. Preliminary analysis of the BPM

4.1. Threshold conditions.

The concept of threshold conditions is one of the most important concepts in
mathematical epidemiology. It specifies when the disease spreads if a small number
of infected people are introduced into the susceptible population. The threshold
conditions are usually characterized by the reproductive number which can be
obtained by the study of stability of the infection-free equilibrium.

In model (2.1), there is an infection-free equilibrium (S; = S9,I; =0), i =
1,--- , K. The stability of this equilibrium is completely determined by the equa-
tions of I; about the equilibrium I; = 0, and can be investigated by either con-
structing a Liapunov function or examining the eigenvalues of the Jacobian matrix
evaluated at the equilibrium.

It is difficult to construct a suitable Liapunov function (see [17]) to determine
the reproductive number for the whole population. Hence, we analyze the eigenval-
ues of the Jacobian matrix of the BPM evaluated at the infection-free equilibrium.
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The Jacobian matrix at I; = 0 has the following form of

SO SO . : SO
cBa1 b —v Cﬂqlz",ﬁb cBa1k w5
: S S. s32
J= cﬁlh.ll—v% cﬂgzzl—.v% -v ... CﬂQz.KTV% (41.1)
: SO : SO o :SO
cBak1 3 cBaxz7s  --- CcBaxxF —v,

Stability of this Jacobian matrix J gives threshold conditions for the epidemic.
In general, it is difficult to derive an explicit formula of the reproductive number
and usually the eigenvalues of (4.1.1) must be determined numerically. We have
investigated this problem analytically for the two-group model (3.3), where the !
classification of groups may be social, economic, ethnic, or geographic by locating
the eigenvalues of the Jacobian matrix at the infection-free equilibrium.

Theorem 4.1.1. Define the reproductive number by

cB

Bo= 2 o '(an'l) + 283 + \/(‘IHS? - 2259)" + 4¢J12¢1215‘1)S§) . (41.2)

Then, if Ry > 1 the epidemic spreads in the population and if Ry < 1 the epidemic
dies out.

4.2. Sensitivity studies.

The complex dynamics of the BPM is sensitive to combinations of the model
parameters. If the transmission probability 3 increases or the mean duration of
the incubation period 1/v increases, Ry increases and the epidemic spreads more
rapidly. ;

If the probability of partnership formation, g;;, increases, more sexual partner-
ships are formed and the reproductive number increases. :

The sexual behavior of individuals is characterized by o;;. For someone in
group 1, the larger Y ay; is, the less selective they are about whom they form a

partnership with a,ncjl the more partners they will have.

Consider the two group model where the behavior of people in group 2, (21,
as2), and the average acceptability of people in group 1, a = a1 + a12 are fixed.
We now use a2 = a, 0 £ a < a, as a parameter to study the effects of the
relative acceptability of people in group 2 on the reproductive number. A larger
a implies that people in group 1 prefer their partners more from group 2 and are
less interested in forming partners within their own group.

In terms of a,

Role) = 20 ((a — )8 + adySs + 1/ ((a — )21 — 0%,8:)° + 4aﬁlslsza2) :

(4.2.1)
By analyzing Ry as a function of o, we have the following result.
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Theorem 4.2.1. Assume that preferences in group 2 are constant and that a1 +

o = a 18 fized, but o varies from 0 to a. Then

i) if S1a® < 03,85,, the reproductive number Ro(c) is an increasing function of
o;

ii) if S1a® > 03,S,, there exists a unique o*, in (0,a), such that the reproductive
number Ro(a) assumes its minimum at o* and Ro(a) is decreasing as o
increases from 0 to a* and is increasing as a increases from o* to a.

Example 4.2.2. For the two gfoup model (3.2.4) with the parameters
S9 =100, S2=200, $=0.2, u=0.015, c=5 an =07 a=1,

we let az; increase from 0.3 to 0.75. In Fig. 3 we see that the reproductive number
as a function of a is concave. The reproductive number is an increasing function
of a when a2z > 0.7 because hypothesis i) in Theorem 4.2.1 is satisfied. When
a2 < 0.7, hypothesis ii) is satisfied and the reproductive number is decreasing.
The minimum point o* increases as a2 decreases. The dynamics of the susceptibles
and infecteds for different a’s are shown in Fig. 4.
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5. Generalization to a continuum

The biased preference model can also be applied to a population with a continuum
of biased mixing behavior.

Let z be a continuous state vector of characteristics of individuals in the pop-
ulation (such as age, geographical positions, or behavioral traits) defined in a set
X. Let S(t,z) and I(t, z) be continuous densities of the susceptibles and infecteds
respectively and p(t, ) = S(t,z) + I(t, z).

Assume that the desirability of an individual of state = to form a partnership
with an individual of state y is described by a(z,¥), =,y € X. Then the accept-
ability of an individual of state y to an individual of state y is a(y, z).

The availability of individuals with state y in the population is p(t,y)/N (%)
where N(t) = [ p(t,z)dz is the total population.

zeX
Define c as the average number of encounters of each individual in the popu-

lation when every individual selects their partners randomly. Then the number of
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partners of an individual of state z per unit time is

r9) = 5 /X oz, 9)oly, 2)o(t, y)dy. (5.1)
ye

The infection rate of a susceptible individual of state z infected from an infected
individual of state y at time ¢ can be expressed by

\62) = 57 [ By vet, 26,9, (5.2
yeX

where 3(z,y) is the transmission rate of the disease from an infected individual of
state y to a susceptible individual of state z.

The probability of a partnership forming ¢(z,y) = a(z,y)a(y, z) is symmetric
and the balance constraints are automatically satisfied.

The dynamics of the epidemic is governed by the following system:

D;S(t,z) =A(z) — (u(z) + A, 2))S(t, z),
D:I(t,z) =\(t, z) — v(z)I(t, ),

where D, denotes the total derivative with respect to time. The threshold condi-
tions are the continuum analogues of those in Section 4.

(5.3)

6. Discussion

We start with the preference behaviors of individuals in the sexually active pop-
ulation to formulate the biased preference models. One of the main features of -
the biased preference model is that the balance constraints for biased mixing func-
tions are automatically satisfied. The approach can be applied to situations such as
mixing between people in different social, economic, ethnic, or geographic groups,
where biased partnership formation is central and where the satisfaction of the
balance conditions may not be a trivial routine.

The other important feature of the PBM is that the partnerships formed in
the population depends on the desirability and acceptability of individuals in each
group or each state. Hence, although the number of encounters in each group is
fixed, only those encounters which are mutually acceptable result in partnerships.
We believe that this is more reasonable than assuming the number of partners
in each group is fixed. Moreover, this important feature gives more flexibility in
modeling nonrandom mixing to include other factors for the spread of the disease
as is discussed in [12].

For mathematical simplicity, we assume that the desirability and the accept-
ability are constant in this article, which means that people do not change their
acceptability no matter what happens in the environment. More realistically, peo-
ple would adjust their acceptability according to availability of their desired part-
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ners. Hence, the acceptabilities o should be density dependent. That is, they are
functional of IV;, which certainly increases difficulty in mathematical analysis.

- To consider availability, we assume the probability to encounter a person from ‘
group j is N;/N or ¢;N;/3" ¢ N. This is based on the homogeneous mixing as- |

k
sumption that people in the population have an equal probability to select their
partners. This is not valid for heterogeneous populations such as a two sex popu-

lation. In order to model those populations, the availability formulation needs to
be modified.
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